受人类的认知模式启发,研究团队将认知形成的高度自主性凝练为“思维计算—实体控制—环境感知”的三元交互,建立了自主无人机“群聊式”控制框架,实现了开放环境和复杂任务中的智能交互、主动感知和自主控制,提高了无人机任务执行的自主性。总体而言,类人对话交互、主动环境感知、自主实体控制,是自主无人机集群的主要能力。在类人对话交互方面,研究团队提出“群聊式”对话交互方法,将声音、图像和无人机自身状态等多种信息,通过大模型转换为自然语言的对话形式,实现了用户与无人机,以及无人机与无人机之间自主和直观的交互方式。
同时,研究团队设计了一套高效的实时反馈机制,使得无人机能够在任务执行的关键节点通过对话报告自身状态、寻求用户确认,大大提高了复杂任务执行的稳定性和安全性。在实际任务执行中,可根据感知信息和任务目标,动态调整无人机飞行路径和观测位姿,尝试从不同角度和位置感知周围世界,逐渐降低环境中的不确定性,实现高效的信息采集和任务执行。研究团队还依托无人机平台设计了夹爪等末端执行器,将传统无人机拓展为“飞行机器人”,具备抓取能力。同时构建了异构无人机集群协同控制机制,结合环境感知反馈,实时调整无人机编队的飞行状态,使集群分工执行区域搜索、目标定位和抓取等任务。
据悉,大模型自主无人机集群是研究团队将生物智能“思维计算—实体控制—环境感知”的三元交互模式应用于自主智能体的一次成功尝试,依托大语言模型、无人机平台和多种传感器,实现对话交互、主动感知和自主控制,对安防巡检、灾害救援、空中物流等临地安防场景下的应用具有重要意义。