该研究的核心概念是将多种类型的数据整合到一个多维索引(或用人工智能术语来说,“嵌入空间”)中。这个概念可能有些抽象,但它正是近期生成式人工智能热潮的基础。例如,人工智能图像生成器,如DALL-E、Stable Diffusion和Midjourney等,都依赖于在训练阶段将文本和图像联系在一起的系统。它们在寻找视觉数据中的模式的同时,将这些信息与图像的描述相连。这就是为什么这些系统能够根据用户的文本输入生成
图片。同样的道理也适用于许多能够以同样方式生成
视频或音频的人工智能工具。
me
ta公司称,其模型ImageBind是第一个将六种类型的数据整合到一个嵌入空间中的模型。这六种类型的数据包括:视觉(包括图像和
视频);热力(红外图像);文本;音频;深度信息;以及最有趣的一种——由惯性测量单元(IMU)产生的运动读数。(IMU存在于手机和智能手表中,用于执行各种任务,从手机从横屏切换到竖屏,到区分不同类型的运动。)
未来的人工智能系统将能够像当前针对文本输入的系统一样,交叉引用这些数据。例如,想象一下一个未来的虚拟现实设备,它不仅能够生成音频和视觉输入,还能够生成你所处的环境和物理站台的运动。你可以要求它模拟一次漫长的海上旅行,它不仅会让你置身于一艘船上,并且有海浪的声音作为背景,还会让你感受到甲板在脚下摇晃和海风吹拂。
me
ta公司在博客文章中指出,未来的模型还可以添加其他感官输入流,包括“触觉、语音、气味和大脑功能磁共振成像信号”。该公司还声称,这项研究“让机器更接近于人类同时、全面、直接地从多种不同的信息形式中学习的能力。”
当然,这很多都是基于预测的,而且很可能这项研究的直接应用会非常有限。例如,去年,me
ta公司展示了一个人工智能模型,能够根据文本描述生成短而模糊的视频。像ImageBind这样的研究显示了未来版本的系统如何能够整合其他数据流,例如生成与视频输出匹配的音频。
对于行业观察者来说,这项研究也很有趣,因为IT之家注意到me
ta公司是开源了底层模型的,这在人工智能领域是一个越来越受到关注的做法。