《国家科学评论》及认知学习方法示意图哈工大提供
中新网哈尔滨5月4日电(徐鹏)哈尔滨工业大学5月4日发布消息,该校机电学院高海波教授团队在野外足式
机器人环境认知学习与自主导航方面取得重要进展,相关成果可用于足式等复杂环境移动机器人的自主星球探测、野外救援等任务,并为物理智能系统提供典型案例。
动物可通过对物理特征的理解去适应不断变化的地形环境,为足式机器人的环境认知学习提供仿生学启示。
足式机器人环境物理特征学习框架哈工大提供
然而,机器人实现类似的认知行为却面临诸多挑战。如何通过视觉和触觉信息实现对地形物理特征的有效表征?如何总结归纳机器人与环境的交互经验?如何解决由于地面环境动态变化造成的认知冲突?针对上述问题,研究团队提出足式机器人的环境物理特征类动物学习方法。
研究人员以法向或切向足地作用力学模型为基础,设计了基于模型——数据的无监督学习框架。该研究首次提出具有认知冲突解决能力的增量式在线学习方法,使机器人能够通过视觉与触觉融合感知自主识别环境物理特征信息。
具体而言,在地面表征方面,团队采用足地接触模型表征地形的触觉参数,让机器人“摸一摸”地面就知道柔软度和摩擦程度;另外,在机器视觉(“看一看”)方面,团队提出无监督视觉特征提取方法,无需人类参与,只需机器人自动对比视野中不同地形纹理,即可自主完成。
为让机器人通过“看一看”就能预测地形“摸”起来的感受,团队将机器人实时采集的触觉、视觉特征聚类为知识群集,并通过映射网络将视觉特征和触觉特征联系起来。
最后,团队开展了丰富的室内外感知和导航试验,证明该方法可有效助力机器人实现地面物理特征感知与预测,并在动态环境中学习和调整其认知模型,最终安全执行复杂的导航避障任务。
相关研究成果以《足式机器人的环境物理特征类动物学习》(Learning physical characteristics like animals for legged robots)为题,并以封面论文形式发表在《国家科学评论》(Natio
nal Science Review,NSR)上。(完)