研究人员从模型中收集了一千多个训练实例,范围从个人照片到
电影剧照、受版权保护的新闻图片和有商标的公司标志,并发现人工智能几乎以相同的方式复制了其中的许多内容。来自普林斯顿大学和伯克利大学等高校的研究人员,以及来自科技部门--特别是Google和DeepMind--的研究人员进行了这项研究。
研究团队在之前的研究中指出了人工智能语言模型的类似问题,特别是GPT2,即OpenAI大获成功的ChatGPT的前身。在Google大脑研究员尼古拉斯-卡里尼的指导下,团队通过向Google的Imagen和Stable Diffusion提供图片的标题,例如一个人的名字后生成了结果。之后,他们验证了生成的图像是否与模型数据库中保存的原件相符。
来自稳定扩散的数据集,即被称为LAION的多TB采集图片集,被用来生成下面的图片。它使用了数据集中指定的标题。当研究人员在提示框中输入标题时会产生了相同的图像,尽管因数字噪音而略有扭曲。接下来,研究小组在反复执行相同的提示后,手动验证了该图像是否是训练集的一部分。
研究人员指出,非记忆性的回应仍然可以忠实地表现出模型所提示的文字,但不会有相同的像素构成,并且会与其它训练生成的图像不同。
苏黎世联邦理工学院计算机科学教授和研究参与者Florian Tramèr观察到了研究结果的重大局限性。研究人员能够提取的照片要么在训练数据中频繁出现,要么在数据集中的其他照片中明显突出。根据弗洛里安-特拉梅尔的说法,那些不常见的名字或外表的人更有可能被"记住"。
研究人员表示,扩散式人工智能模型是最不隐私的一种图像生成模型。与生成对抗网络(GANs),一类较早的图片模型相比,它们泄露的训练数据是前者的两倍多。这项研究的目的是提醒开发者注意与扩散模型相关的隐私风险,其中包括各种担忧,如滥用和复制受版权保护的敏感私人数据(包括医疗图像)的可能性,以及在训练数据容易被提取的情况下易受外部攻击。研究人员建议的修复方法是识别训练集中重复生成的照片,并从数据收集中删除它们。