对研究这种现象的兴趣是由于其在加密、通信和量子计算方面的巨大
应用潜力。困难的是,当这些系统与它们周围的环境相互作用时,它们几乎立即变得不相干了。
在巴西圣保罗大学物理研究所(IF-USP)的原子和光的相干操纵实验室(LMCAL)的最新研究中,研究人员成功地开发了一个产生两束纠缠光的光源。有关这项研究的文章最近发表在《物理评论快报》杂志上。
"这个光源是一个光学参数振荡器,或称OPO,它通常由两个镜子之间的非线性光学响应晶体组成,形成一个光学腔体。当一束明亮的绿色光束照射在仪器上时,晶体-镜子动态产生两束具有量子相关性的光束,"文章的最后一位作者、物理学家Hans Marin Florez说。
该研究中使用的光学参数振荡器(OPO)。图像来源:Alvaro Montaña Guerrero
问题是,基于晶体的OPO发出的光不能与量子信息背景下的其他感兴趣的系统互动,如冷原子、离子或芯片,因为其波长与相关系统的波长不一样。"我们小组在以前的工作中表明,原子本身可以被用作媒介,而不是晶体。因此,我们制作了第一个基于铷原子的OPO,其中两个光束是强烈的量子相关的,并获得了一个可以与其他有可能作为量子存储器的系统互动的源,如冷原子,"Florez说。
然而,这并不足以表明这些光束是纠缠在一起的。除了强度之外,与光波同步有关的光束相位也需要显示出量子关联性。他说:"这正是我们在《物理评论快报》报道的新研究中所实现的。我们重复了同样的实验,但增加了新的检测步骤,使我们能够测量所产生的场的振幅和相位中的量子相关性。结果,我们能够证明它们是纠缠在一起的。此外,该检测技术使我们能够观察到,纠缠结构比通常所描述的要丰富。我们实际上产生的是一个由四个纠缠谱带组成的系统,而不是两个相邻的谱带被纠缠在一起。"
"在这种情况下,波的振幅和相位是纠缠在一起的。这在许多处理和传输量子编码信息的协议中是基本的。除了这些可能的应用,这种光源还可以用于计量学。强度的量子关联导致强度波动的大大减少,这可以提高光学传感器的灵敏度。想象一下,在一个聚会上,每个人都在说话,你听不到房间另一边的人说话。如果噪音充分降低,如果每个人都停止说话,你就可以在很远的地方听到某人说的话。"他补充说,提高用于测量人脑发出的α波的原子磁力计的灵敏度是潜在的应用之一。
"文章还指出,与晶体OPO相比,铷质OPO还有一个优势。"Florez说:"晶体OPO必须要有镜,使光在腔内保持更长的时间,这样相互作用就会产生量子相关的光束,而使用原子介质,在其中产生的两个光束比晶体更有效,避免了需要镜子来禁锢光这么长的时间。"
在他的小组进行这项研究之前,其他小组曾试图用原子制造OPO,但未能证明所产生的光束的量子相关性。新的实验表明,系统中没有内在的限制来阻止这种情况的发生。研究人员发现,原子的温度是观察量子关联的关键。显然,其他研究使用了更高的温度,这让他们无法观察到相关关系。