在1-2%的癌症病例中,无法确定肿瘤最开始发生的部位,也就是原发灶。由于许多现代癌症治疗方法都针对原发性肿瘤,因此原发灶不明癌症(Cancer of Unknown Primary,CUP)的预后很差,平均总生存期仅为2.7-16个月。为了获得更具体的诊断结果,患者通常必须进行广泛的诊断检查,其中可能包括额外的实验室检查、活检和内窥镜检查等等,这会导致治疗延迟,对患者生存不利。几乎每个诊断出癌症的患者都有组织切片,这是一百多年来的诊断标准。人工智能(AI)结合这些可获取的通用数据能够大大改善这些通常需要大量人工诊断的复杂病例。在这项研究中,研究团队开发了一种基于深度学习的算法,并将其命名为“深度学习评估肿瘤起源”(TOAD),可将肿瘤识别为原发性或转移性肿瘤,并预测其原发灶。研究团队使用超过22000个癌症病例的十亿像素病理学全切片图像对该AI系统进行了训练,然后在约有6500个已知原发癌症病例中进行了测试,并分析了日益复杂的转移性癌症,以建立该AI模型在原发灶不明癌症(CUP)上的分析能力。
对于已知原发灶的肿瘤,该AI模型的预测准确率为83%,Top3预测准确率为96%。然后,研究团队在317个原发灶不明癌症(CUP)中测试了该AI模型,结果发现该AI模型的诊断与病理学家的一致率为63%,Top3诊断一致率为82%。
该AI模型的效果与使用基因组数据预测肿瘤起源的几项近期研究报告大致相当。尽管基于基因组的AI技术为诊断提供了另一种选择,但患者通常没有基因检测数据,尤其是在疫疗资源匮乏的环境中。研究团队表示,该AI模型能够减少需要进行的辅助检查次数,减少额外组织采样,降低患者诊断所需总时间,能够加速诊断和后续治疗。此外,Top3预测结果可以指导病理学就缩小范围,从而更简单地进行后续操作。这是使用全组织切片图像进行AI辅助癌症起源预测的第一步,是一个令人兴奋的领域,具有标准化和改善诊断过程的潜力。研究团队希望继续在更多病例中训练这一基于组织学的AI模型,并参与临床试验,以确定它是否可以提高诊断能力和患者预后。