9月16日,以“共筑AI安全安享智能未来”为主题的AISC首届人工智能安全大赛(以下简称大赛)落幕。这是首个全国性人工智能安全赛事,旨在推动人工智能攻防技术创新、实战演练、场景挖掘和Kaiyun官方网站app登录 培养。
和其他通用目的技术一样,AI在高歌猛进的同时,也隐藏着新的风险和隐患。联合主办方北京瑞莱智慧科技有限公司(以下简称瑞莱智慧)首席执行官田天认为,人工智能技术风险发生的范围正随着
应用场景的日趋广泛而逐步扩大,风险发生的可能性也随着其应用频次的增长而持续提高。
在同期举办的主题论坛上,与会专家们表示,重视人工智能安全体系建设,既是当务之急,也是长远考虑,需加快促进人工智能安全领域关键技术研究与攻防实践。
在田天看来,人工智能当前的安全风险主要可以从“人”与“系统”这两个视角来剖析。
从人的视角来评估AI的安全问题,首当其冲就是技术的两面性问题,存在AI滥用甚至“武器化”的问题。具体到人工智能的应用中来看,当前最为典型的代表就是深度伪造技术,它的负向应用风险持续加剧且已产生实质危害。
而现场的人脸识别破解演示,所揭示的正是系统的风险,它来自于深度学习算法本身的脆弱性。以深度学习算法为核心的第二代人工智能是个“黑盒子”,具有不可解释性,意味着系统存在结构性的漏洞,可能受到不可预知的风险,典型的就比如现场演示的“神奇贴纸”,其实就是“对抗样本攻击”,通过在输入数据中添加扰动,使得系统作出错误判断。
这一漏洞在自动驾驶感知系统同样存在,瑞莱智慧演示了用对抗样本攻击自动驾驶汽车。正常情况下,在识别到路障、指示牌、行人等目标后,自动驾驶车辆就会立即停车,但在目标物体上添加干扰图案后,车辆的感知系统就会出错,径直撞上去。
人工智能对抗攻防包括对抗样本、神经网络后门、模型隐私问题等多方面技术。模型有错误就需要进行及时的修复,中国科学院信息安全国家重点实验室副主任陈恺提出“神经网络手术刀”的方法,通过定位引发错误的神经元,进行精准“微创”修复。陈恺表示,不同于传统的模型修复工作需要重新训练模型,或者依赖于较大量的数据样本,这种方式类似于“微创手术”,只需极少量或无需数据样本,能够大幅提升模型修复效果。
安全的本质在于对抗升级,构建安全需要一个持续攻防演进的过程。田天表示,大赛聚焦人工智能真实应用场景中的典型漏洞及风险,以赛促建、以赛促研,通过考核参赛队伍的漏洞发现、漏洞挖掘等能力,探索新型安全需求场景,推动AI攻防技术创新,为强化人工智能治理体系与安全评估能力建设提供支撑。
专家提出,从长远看,人工智能的安全问题,还需从算法模型的原理上突破,唯有持续加强基础研究,才能破解核心科学问题,同时他们强调,人工智能的未来发展需确保对整个社会、国家发展的有效性和正向促进性,需要政产学研用多方协同共进。
在人工智能的全生命周期,不仅存在算法层面的安全性问题,算力作为人工智能发展的重要基础设施,也面临着诸多风险,推动人工智能算力基础设施安全发展具有重要意义。活动期间,由国家工业信息安全发展研究中心牵头,联合华为技术有限公司和北京瑞莱智慧科技有限公司共同撰写的《人工智能算力基础设施安全发展白皮书》发布。
自七月开启报名以来,大赛共吸引来自全国范围内70多所高等高校、科研院所、企业机构的超过400支团队,共计600余名选手的踊跃参与。经过三个月的激烈角逐,最终,上海交通大学联合战队“AreYouFake”与北京交通大学战队“BJTU-ADaM”分别摘得深度伪造安全与自动驾驶安全赛道桂冠,北京理工大学战队“DeepDream”与建信金科战队“TianQuan&LianYi”共同位列人脸识别赛道第一名。