(来源:Nature)
portant;">
portant;">这是一条正在翻转尾巴的小鱼。
portant;">
portant;">
portant;">这是一根根弯曲的 " 手指 ",就像弹钢琴一样。
portant;">
portant;">
portant;">
portant;">
portant;">此前软体机器人:成本高昂、任务执行不够完美
portant;">所有机器人都需要一个可引起运动的部件,也叫作执行器。刚性机器人是根据关节以固定方式进行移动,而软体机器人在移动方式上,具有更多想象力。
portant;">软体机器人,是由可延展材料制成的机器人。它可进入和绕行一般硬体机器人无法触达的地方。设计时的最大困难在于控制拉伸方式和变形方式,这决定着它的移动方式。
portant;">尽管它的应用前景不错,但目前许多软体机器人的柔软 " 身体 " 却不得不被刚性驱动器来驱动,任务执行的效果往往会任务实现的目标以及效果大打折扣 。
portant;">为构建更实用的软体机器人,已有科研团队开发出软体驱动器,来让机器人完全实现软体化。但此前要想实现这一目的,通常需要 3D 打印机、或激光切割机等昂贵设备。
portant;">而文章开头动图中的软体机器人,搭载了科学家最新发明的新技术—— " 花式气球 " 泡泡铸造法,上述难题也借此被攻克。
portant;">
portant;">
portant;">" 花式气球 " 启发一篇 Nature 封面论文
portant;">该研究由普林斯顿大学化学与生物工程系的团队完成,这是一种使用 " 花式气球 " 法来制造软体机器人的新方法。在充气时,气球能以可预测的方式改变自身形状。
portant;">以可握住水果的软体手指为例,这是能像肌肉一样收缩的手指,当给它施加空气时还可以单独弯曲。
portant;">
portant;">
portant;">
portant;">
portant;">
portant;">
portant;">
portant;">
portant;">如果在液体聚合物固化前留有更多的时间,最终形成的顶部薄膜可以更薄。薄膜越薄,在给它充气时就能拉伸得越多,进而可形成更大的整体弯曲。
portant;">
portant;">
portant;">
portant;">
portant;">并且,执行器在充气时会变形。相比之下,其他软体机器人系统则通常会使用磁场、电场、温度或湿度变化来让执行器产生变形。
portant;">在该工作中,该团队把大量时间花在弄清楚机器人充气后的行为方式,为的是设计出具有特定运动特征的软体驱动器,以及能用一种任何人都能学会的简单方程来预测会接下来将会发生什么。
portant;">
portant;">
portant;">
portant;">
portant;">
portant;">
portant;">这些新功能将在软物质通信系统中产生较大反响,可让下一代机器人材料更容易移动,并可以与环境交互,同时又能让其复杂性保持在易处理的水平。
portant;">不过,这种制造方法仍有需要克服的挑战,例如需要防止设备充气过度时、以避免发生爆裂。目前,泡泡铸造只在几米高的弹性体填充管中取得了成功,过度膨胀会导致它爆裂,一旦失败结局将是灾难性的。
portant;">
portant;">
portant;">整体来说,泡泡铸造技术提供了一种简单、灵活的方法,即使用流体力学的基本规则,也就是使用流体物理学来给软体机器人创建执行器。
portant;">美国西北大学应用物理专业博士生袁航表示,该研究将空气注入到由液态向固态转变过程中的弹性体,思路非常巧妙。此外,还可稳定制备出由气压驱动的各种柔性驱动元件。
portant;">美国波士顿大学工程学院博士杨溢分析称,该研究的重点不在于所制作的软体机器人本身,而在于制作方法。此方法不仅简单,并且可实现常规方法很难实现的效果。传统制作方法是模具浇筑,而该研究则利用流体力学的原理,设计了简单且精确的制作方法去制作气压驱动的软体机器构件。
portant;">袁航也认为,该方法不涉及复杂的制备过程,可由特定形状模具、去大规模地制备各种柔性驱动元件。此外,这项研究也详细阐述了弹性体截面形状形成的机理。
portant;">未来将研发 " 千足虫 " 机器人
portant;">传统的硬体机器人虽然有很多用途,但它们由于坚硬的外壳,给人的印象总是不太温和,功能也比较受限。
portant;">比如,着坚硬外壳的机器人无法做到握住你的手、并带着你移动,而且它们尤其不适合与柔软的东西互动,例如西红柿等。
portant;">
portant;">
portant;">研究人员希望通过对复杂执行器的组装,并借助该方法的灵活性、鲁棒性和预测性,可加速软体机器人的开发,例如开发出长形、曲折或血管结构的各种软体机器人,从而实现新功能。
portant;">
portant;">
portant;">接下来,研究人员希望利用该方法进一步开发新的软体机器人,比如可像千足虫那样、以连续的波一起移动的机器人,或者以类似于人类心脏一样从单一压力来源进行收缩和放松的机器人。
portant;">