该公司表示,训练机器人可能是一项"艰巨的工作",因为它们需要针对世界上的每个物体、环境、任务和情况进行数十亿点数据的训练。不过,Google表示,RT-2为更多的通用机器人带来了巨大的发展前景。
虽然该公司对RT-2所能带来的好处感到兴奋,但它表示,要让机器人在以人为中心的环境中发挥作用,还有很多工作要做。DeepMind认为,通用物理机器人可以从VLA模型中产生,它们可以推理、解决问题和解释信息,以执行现实世界中的任务。
顾名思义,这并不是机器人变形VLA模型的第一次迭代。DeepMind表示,RT-2建立在RT-1的基础上,与之前的模型相比,泛化能力有所提高,在新的、未见过的任务上表现更好。
与前代机器人相比,RT-2的另一项新技能是符号推理,这意味着它能理解抽象概念并对其进行逻辑操作。其中一个例子是,机器人被要求将巴纳移动到2加1的总和处,尽管它并没有接受过抽象数学或符号操作的明确训练,但它还是正确地完成了任务。
虽然RT-2是机器人技术向前迈出的一大步,但宣布终结者机器人已经到来并不公平。该模型仍然需要人类的输入和监督,并且在实际机器人操作中会遇到很大的技术限制。
尽管如此,我们还是希望它能带来一些有趣的机器人,完成以前不可能或不容易完成的任务。